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Improving Alzheimer’s Disease Diagnosis With
Multi-Modal PET Embedding Features by a 3D

Multi-Task MLP-Mixer Neural Network
Zi-Chao Zhang , Xingzhong Zhao, Guiying Dong, and Xing-Ming Zhao , Senior Member, IEEE

Abstract—Positron emission tomography (PET) with flu-
orodeoxyglucose (FDG) or florbetapir (AV45) has been
proved effective in the diagnosis of Alzheimer’s disease.
However, the expensive and radioactive nature of PET has
limited its application. Here, employing multi-layer per-
ceptron mixer architecture, we present a deep learning
model, namely 3-dimensional multi-task multi-layer per-
ceptron mixer, for simultaneously predicting the standard-
ized uptake value ratios (SUVRs) for FDG-PET and AV45-
PET from the cheap and widely used structural magnetic
resonance imaging data, and the model can be further
used for Alzheimer’s disease diagnosis based on embed-
ding features derived from SUVR prediction. Experiment
results demonstrate the high prediction accuracy of the
proposed method for FDG/AV45-PET SUVRs, where we
achieved Pearson’s correlation coefficients of 0.66 and 0.61
respectively between the estimated and actual SUVR and
the estimated SUVRs also show high sensitivity and dis-
tinct longitudinal patterns for different disease status. By
taking into account PET embedding features, the proposed
method outperforms other competing methods on five in-
dependent datasets in the diagnosis of Alzheimer’s disease
and discriminating between stable and progressive mild
cognitive impairments, achieving the area under receiver
operating characteristic curves of 0.968 and 0.776 respec-
tively on ADNI dataset, and generalizes better to other
external datasets. Moreover, the top-weighted patches ex-
tracted from the trained model involve important brain re-
gions related to Alzheimer’s disease, suggesting good bio-
logical interpretability of our proposed method.”
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I. INTRODUCTION

A LZHEIMER’s disease (AD) is a leading cause of de-
mentia [1] with an estimated prevalence of 10-30% for

populations aged over 65 [2]. The characteristics of AD in-
clude cortical and hippocampus atrophy, the accumulation of
beta-amyloid peptides and abnormal phosphorylation of tau
protein in the brain, and the decline of brain glucose metabolism
[1], [2], [3]. Thanks to advances in imaging technologies, e.g.,
structural magnetic resonance imaging (sMRI) and positron
emission tomography (PET), it is becoming possible to detect
AD more effectively. With sMRI we can accurately detect the
brain regions with decreased volume. By using PET, such as
fluorodeoxyglucose (FDG)-PET or florbetapir (AV45)-PET, we
can have a look at the glucose metabolism or beta-amyloid
burden in the brain [4], [5], [6]. Accordingly, given the accumu-
lation of imaging data, some machine learning or deep learning
based methods have been developed to predict AD status, e.g.,
the diagnosis of AD or the prognosis of its prodromal stage mild
cognitive impairment (MCI), as AD or progressive MCI (pMCI)
individuals tend to have atrophic brain regions, a lower level of
glucose metabolism, and higher beta-amyloid burden compared
with cognitive normal (CN) or stable MCI (sMCI) individuals
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. Methods using PET are preferred since
PET is able to directly detect the pathological biomarkers for
AD, e.g., beta-amyloid, and shows superior diagnostic accuracy
compared to sMRI, especially for the early detection of AD [5],
[6], [21]. Besides, PET can also be integrated with sMRI to
further enhance AD diagnosis performance [7], [8], [10], [15],
[20], [22], [23], [24] as these modalities can provide comple-
mentary information, such as morphology and metabolism. For
example, Ning et al. developed a machine learning framework
to integrate sMRI and PET in the diagnosis of AD, where using
both sMRI and PET achieved higher performance compared to
the sMRI-only or PET-only model [15]. Recently, Goel et al.
utilize wavelet transform to fuse sMRI and PET for AD diag-
nosis, which showed superior performance to the single modal
methods [22].
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However, compared to sMRI, PET is costly, and people
might have radiative concerns about using radioactive tracers,
which resulted in a much smaller amount of available PET
data compared to sMRI in many public imaging databases for
AD. Although some previous studies [7], [8], [10] employed
both sMRI and PET data for AD diagnosis, the subjects with
missing PET images were usually excluded, which significantly
reduced the number of subjects of interest. To mitigate this
problem, some computational methods have been developed
to synthesize PET images from the matched sMRIs [25], [26],
[27] to increase the number of usable samples. For instance, Li
et al. developed a convolutional neural network (CNN) based
model for directly synthesizing PET images from sMRI [25],
which also improved the AD diagnosis performance. Recently,
the generative adversarial network (GAN) was employed for
PET image synthesis [9], [27], [28], where a generator was used
for PET image synthesis and a discriminator was employed
for discriminating the synthesized from real PET images. For
instance, Hu et al. proposed a bidirectional GAN model to
synthesize the FDG-PET images, which also demonstrated some
sensitivity of the synthesized images for AD diagnosis [27].
Rather than directly predicting the entire PET image, a few
studies have investigated predicting descriptive indices of PET
images [29], [30], which hold stronger clinical significance. For
example, Whitwell et al. developed a machine learning model
to predict the PET based binary beta-amyloid status from MRI
and other clinical features [29]. Reith et al. used a deep learn-
ing model to predict the progression of the AV45-PET based
biomarker in the future to improve clinical trial patient selection
[30].

Despite the promising results achieved in image synthesiz-
ing or indices prediction for PET, there is still much room to
improve. Firstly, it can be hard and unstable to synthesize the
whole PET image with GAN, given a relatively small amount
of matched sMRI and PET data [31], [32]. Secondly, only a
single modality of PET images was usually considered in the
existing methods, whereas different modalities of PETs can
provide complementary information for AD diagnosis [20], [29],
[33]. For example, FDG-PET and AV45-PET can respectively
detect the glucose and beta-amyloid peptide in the brain. Thirdly,
most previous methods for AD diagnosis or PET image/indices
prediction employed CNN [25], [26], [27], [30]. Since CNN
uses local operators such as convolution and pooling [34], mod-
els based on CNN need to stack more convolutional layers to
capture the longer-distant relationship lying in input, which leads
to larger and deeper models and difficulty for training. Moreover,
large models are inappropriate choices given a relatively small
amount of training data.

In this work, by employing the recently emerging multi-layer
perceptron mixer (MLP-Mixer) architecture [35], we establish
a deep learning model, namely 3-dimensional multi-task multi-
layer perceptron mixer (3D-Mixer),1 consisting of a regression
module and a classification module. Different from previous
works that only focus on a single modality or synthesizing the
whole PET images, our proposed 3D-Mixer can simultaneously

1The source code is available at https://github.com/ZhaoXM-Lab/3D-Mixer.

predict standardized uptake value ratios (SUVRs) for both FDG-
PET and AV45-PET via the regression module. Besides, to
the best of our knowledge, this is the first work that employs
MLP-Mixer architecture for PET data prediction which is able
to capture long-distant relationships with a few layers and avoid
the inherent disadvantages of CNN and GAN. Evaluations on
independent datasets demonstrate that our 3D-Mixer can predict
FDG/AV45-PET SUVRs effectively, and the estimated SUVRs
also exhibit strong discrimination capacity between CN and AD
subjects. Moreover, by combining sMRI with PET embedding
features, i.e., the output of the second last layer of the regres-
sion module, the classification module can accurately predict
AD status, i.e., either the diagnosis of AD or the prognosis
prediction of MCI. Benchmarking on five independent datasets
demonstrates the proposed 3D-Mixer model outperforms other
competing CNN and non-CNN methods.

II. METHODS

A. Overview

Fig. 1 shows the framework of the proposed 3D multi-layer
perceptron mixer model (3D-Mixer) that is able to simultane-
ously predict FDG/AV45-PET SUVRs and AD status, which
consists of a regression module and a classification module. The
input patches of each module were first embedded into a feature
matrix via the linear layer and there were N Mixer blocks along
each branch in the regression and classification modules. We
first trained the regression module to simultaneously predicts
FDG/AV45-PET SUVRs via the FDG/AV45-PET branch, which
took 3D sMRI patches as inputs. And the classification module
was then used for AD status prediction, i.e., discrimination of CN
subjects from AD subjects, or the discrimination of sMCI sub-
jects from pMCI subjects, based on the concatenated embedding
features derived from the regression module and classification
module, where the classification module was pretrained on the
discrimination of CN subjects from AD subjects taking input
as sMRI patches extracted from pre-identified landmarks. The
backbone of both regression and classification modules were
Mixer blocks [35], and each Mixer block contains two multi-
layer perceptrons (MLPs) as feature mixing layers that were
sequentially applied to the columns and the rows of the input
matrix of the Mixer block.

B. Datasets

Five datasets were used in this work, including the
Alzheimer’s disease neuroimaging initiative (ADNI) database,2

the National Alzheimer’s Coordinating Center (NACC) database
[36], the Australian Imaging Biomarkers and Lifestyle flagship
study of ageing (AIBL) database [37], the Open Access Series
of Imaging Studies 3 (OASIS) dataset [38], and the Minimal
Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD)
dataset [39]. In total, as summarized in Table I, 1821 sub-
jects from ADNI (including the subsets ADNI-1/2/GO/3), 4381
subjects from NACC, 586 subjects from AIBL, 733 subjects

2[Online]. Available: https://adni.loni.usc.edu/
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Fig. 1. Framework of 3D-Mixer that consists of a regression module and a classification module. Input sMRI patches of each module were
embedded into a feature matrix by the linear layer and there were N Mixer blocks along each branch as shown in regression and classification
modules. Regression module took 3D sMRI patches as input and predicted FDG-PET and AV45-PET SUVRs simultaneously as outputs via the
FDG-PET branch and AV45-PET branch. Classification module was pretrained independently on the classification of CNand AD subjects taking
input as sMRI patches extracted from pre-identified landmarks. And the ultimate AD status was predicted based on the concatenated embedding
features derived from the pretrained regression module and the pretrained classification module. Mixer block was used to build the backbones of
3D-Mixer, where LayerNorm denotes layer normalization. Each Mixer block contains two multi-layer perceptrons (MLPs) as feature mixing layers,
which were sequentially applied to the columns and the rows of the input matrix of the Mixer block.

from OASIS, and 69 subjects from MIRIAD were drawn. All
participants gave informed consent in accordance with the local
Institutional Review Board of each study. (Detailed ethic state-
ments for each study can respectively be found on their web
pages.) ADNI, NACC, AIBL, and OASIS datasets contain CN,
sMCI, pMCI, and AD subjects, while MIRIAD dataset contains
only CN and AD subjects. The sMCI individuals were those
diagnosed as MCI at baseline or the earliest available visits and
did not progress to AD in the follow-ups, while pMCI subjects
were those diagnosed as MCI but progressed to AD in the
follow-ups. It is worth noting that during training, the data at
all available visits were used to increase sample size, while only
the data at baseline or the earliest available visit were used for
the subjects in the validation and test set.

C. Preprocessing

For the sMRIs of all datasets we used in this article, a unified
preprocessing pipeline was built with the Statistical Parametric
Mapping software (SPM12; www.fil.ion.ucl.ac.uk/spm) [40].
Each sMRI was spatially registered to the MNI152 template
and segmented into gray matter, white matter, and cerebrospinal
fluid, resulting in 3D preprocessed images of the size of 121×
145× 121. In this work, only gray matter was used.

The FDG-PET SUVR (UCBERKELEYFDG_05_28_20)
and AV45-PET SUVR data (UCBERKELEYAV45_01_14_21)
were directly retrieved from the ADNI website (http://adni.loni.
usc.edu/), where the frames of each original PET image for a
visit were firstly averaged to create a single frame, and then the

mean SUVR for multiple brain regions of each subject were
computed [41].

D. Patch Extraction and Landmark Identification

For the regression module of 3D-Mixer, it took input as
a sequence of non-overlapping 3D sMRI patches. Following
previous studies [16], [18], we use a patch size of 25× 25× 25,
and a window with the size of 100× 125× 100 centered in the
preprocessed sMRI was uniformly divided into 80 patches.

Similar to previous works [16], [17], [18], anatomical land-
marks were identified for selecting patches from sMRI as input
of the classification module. Firstly, we sampled an equal num-
ber of CN and AD subjects as much as possible in the training
set. We extracted 80 patches without overlapping for each sMRI
as mentioned above, and the mean of voxel intensities for each
patch was used to characterize the patch. Subsequently, those
patches that were differentially distributed between the CN and
AD groups were identified with t-test, and a fixed number (50 in
this article) of patches with the top smallest p-values were used as
the anatomical landmarks. It is worth noting that the anatomical
landmarks were identified in the training data, and we used the
same patch size and landmarks in training, validation, and testing
for the proposed 3D-Mixer and other competing methods.

E. 3D-Mixer Model

The proposed 3D-Mixer (Fig. 1) consists of a regression
module and a classification module. For each module, the input
3D sMRI patches were embedded into a 2D feature matrix
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TABLE I
SUMMARY OF THE DATASETS

X ∈ Rk×c via a linear layer, where k denotes the number of
input patches and c denotes the dimensions of features for each
patch. Subsequently, for each branch, the feature matrix was
further sequentially transformed by N Mixer blocks [35] and
fed to an output layer with sigmoid activation. In this article, N
and c were set to 4 and 64 respectively, and k was 80 or 50 for
the regression module or the classification module respectively.

1) Mixer Block: In 3D-Mixer, instead of the widely applied
3D CNN, we adopt Mixer blocks to build the backbone of both
classification and regression modules. A Mixer block consists
of two feature mixing layers implemented by two MLPs that
were sequentially applied to the columns and rows of the input
matrix, which leads to a much larger receptive field compared
to CNN architectures. Given the input matrix X , the output of
the Mixer block Y = Mixer(X) can be formulated as follows:

U∗,i = X∗,i +WT
2 σ

(
W1LayerNorm(X)∗,i + b1

)
+ b2,

for i = 1 . . . c, (1)

Yj,∗ = Uj,∗ + σ
(

LayerNorm(U)j,∗ W
T
3 + bT3

)
W4 + bT4 ,

for j = 1 . . . k, (2)

where X, Y ∈ Rk×c, X∗,i = [x1i x2i . . . xki]
T and Yj, ∗ =

[yj1 yj2 . . . yjc] are the ith column of X and the jth row of
Y , W1, W2 ∈ Rrk×k, W3, W4 ∈ Rrc×c, b1 ∈ Rrk, b2 ∈ Rk,
b3 ∈ Rrc, and b4 ∈ Rc are the learnable weights, k denotes the
number of input patches, c is the dimensions of features for
each patch, r represents the expansion factor (set to 4 in this
article) andσ(·) is the element-wise activation function Gaussian
Error Linear Unit. LayerNorm denotes layer normalization. A
dropout operation was also employed after each dense layer with
a dropout rate of 0.1 in pretraining and 0.3 in the final training.

2) Regression Module: The regression module took input as
a sequence of non-overlapping 3D sMRI patches and simulta-
neously predicted FDG/AV45-PET SUVRs via the FDG-PET
branch and AV45-PET branch, where N Mixer blocks were
employed along each branch.

Let p ∈ Rm (m = 25× 25× 25 = 15625) denote a
flattened sMRI patch. The input 3D sMRI patches were first
embedded into a feature matrix X

(0)
reg ∈ Rkr×c by a linear layer:

X(0)
reg =

⎡
⎢⎢⎣
pT
1

pT
2

. . .
pT
kr

⎤
⎥⎥⎦Wreg +

⎡
⎢⎢⎣

bTreg
bTreg
. . .

bTreg

⎤
⎥⎥⎦ , (3)

where W ∈ Rm×c and b ∈ Rc are the learnable weights, and kr
denotes the number of input patches for the regression module.
Subsequently, N − 1 shared Mixer blocks and a task-specific
Mixer block were sequentially built for each output branch:

X(n)
reg = Mixer(n)reg

(
X(n−1)

reg

)
, for n = 1 . . . N − 1,

(4)

X(FDG)
reg = Mixer(FDG)

reg

(
X(N−1)

reg

)
, (5)

X(AV 45)
reg = Mixer(AV 45)

reg

(
X(N−1)

reg

)
, (6)

where Mixer(n)reg (·) denotes the nth shared Mixer block in

the regression module, Mixer(FDG)
reg (·) and Mixer(AV 45)

reg (·)
respectively represents the Mixer block in the FDG-PET SUVR
branch and the AV45-PET SUVR branch. Next, the average
pooling was performed to extract the PET embedding features:

vFDG = AvgPool
(
X(FDG)

reg

)
, (7)

vAV 45 = AvgPool
(
X(FDG)

reg

)
, (8)

where v ∈ Rc, vj =
1
k

∑k
i xij for X ∈ Rk×c. Finally, the

FDG-PET SUVR (oFDG) and AV45-PET SUVR (oAV 45) were
predicted via two output layers with sigmoid activation:

oFDG = g
(
vT
FDGwFDG + bFDG

)
, (9)

oAV 45 = g
(
vT
AV 45wAV 45 + bAV 45

)
, (10)
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wherewFDG,wAV 45 ∈ Rc, bFDG, and bAV 45 are the learnable
weights, and g(·) is the sigmoid function.

3) Classification Module: The classification module is simi-
lar to the regression module in structure but has only one output
branch, which predicted the AD status based on the concatenated
embedding features derived from the regression module and the
pretrained classification module.

Let p̃ ∈ Rm denote a flattened sMRI patch extracted from the
pre-identified landmark. Then the input patches of the classifica-
tion module were embedded into a feature matrixX(0)

clf ∈ Rkc×c:

X
(0)
clf =

⎡
⎢⎢⎣
p̃T
1

p̃T
2

. . .

p̃T
kc

⎤
⎥⎥⎦ Wclf +

⎡
⎢⎢⎣

bTclf
bTclf
. . .

bTclf

⎤
⎥⎥⎦ , (11)

where kc represents the number of the pre-identified landmarks.
Afterward, N Mixer blocks were sequentially applied:

X
(n)
clf = Mixer(n)clf

(
X

(n−1)
clf

)
, for n = 1 . . . N, (12)

Finally, the AD status (oclf ) were predicted based on the
concatenated embedding features:

oclf = g
([
vT
FDG;v

T
AV 45;v

T
clf

]
wclf + bclf

)
, (13)

Where vclf = AvgPool(X(N)
clf ), andwclf ∈ R3c and bclf are

the learnable weights.

F. Loss Function

When training the regression module for FDG/AV45-PET
SUVR prediction, we used mean square error (MSE) as the loss
function:

lreg =
∑

i∈SFDG

(
yiFDG − oiFDG

)2
/ |SFDG|

+
∑

i∈SAV 45

(
yiAV 45 − oiAV 45

)2
/ |SAV 45| (14)

where o is the output of the regression model (e.g., oiFDG is
the predicted FDG-PET SUVR for subject i), y is the true PET
SUVR (e.g., yiFDG is the true FDG-PET SUVR for subject i),
and S is the index set (e.g., SFDG = {i|yiFDG exist} ).

For the classification tasks, we used the binary cross-entropy
loss, which can be formulated as:

lclf = − 1/ |Sclf |
∑

i∈Sclf

[
yiclf log o

i
clf

+
(
1− yiclf

)
log

(
1− oiclf

)]
(15)

where yiclf is the binary classification label for subject i (e.g., 0
for CN and 1 for AD), and oiclf is the predicted AD status.

III. EXPERIMENTS

A. Experiment Settings

In this work, the proposed 3D-Mixer was verified on
FDG/AV45-PET SUVR prediction tasks and two AD status

prediction tasks, where AD status prediction tasks include the
classification of CN and AD subjects and the classification of
sMCI and pMCI subjects. Specifically, the regression module
was trained for predicting FDG/AV45-PET SUVRs. For the AD
status prediction tasks, the classification module was indepen-
dently pretrained for the classification of CN and AD subjects.
Subsequently, we froze the weights of the trained regression
module and trained the whole model for each classification task
using the concatenated embedding features derived from the
regression module and the classification module.

To evaluate the effectiveness of the proposed 3D-Mixer
for AD status prediction, we employed several recently pro-
posed deep learning based methods for comparison, including
landmark-based deep multi-instance learning (LDMIL) [17],
dual attention multi-instance deep learning network (DA-MIDL)
[18], ResNet-18 [42], and Vision Transforme (ViT) [43], where
LDMIL, DA-MIDL, and ResNet-18 are based on CNN while
ViT is a popular non-CNN model. The same hyperparameters
as the original works for the model architectures were used for
LDMIL, DA-MIDL, and ResNet-18. And for ViT, the depth
(the number of transformer blocks), hidden size, MLP size, and
heads were set to 4, 64, 256, and 8 respectively. Specifically,
here we also used batch normalization layers for LDMIL model
to improve its training stability. Besides, for the competing
methods, transfer learning [16] was applied for the classification
of sMCI and pMCI subjects by initializing the weights of the
models with the weights learned in the classification of CN and
AD subjects.

To train the models, we used the optimizer Adam. The learn-
ing rate was initially set to 1× 10−4 and was multiplied by 0.5
once the validation loss had not decreased for 10 epochs. And
only the model with the smallest validation loss was saved.

B. Simultaneous Prediction of FDG/AV45-PET SUVRs
From sMRIs

For FDG/AV45-PET SUVR prediction, the regression mod-
ule took input of 3D sMRI patches at each time point and
predicted the matched FDG/AV45-PET SUVRs via two output
branches (Fig. 1). All subjects from the Alzheimer’s disease
neuroimaging initiative (ADNI) database (including ADNI-1,
ADNI-2, ADNI-GO, and ADNI-3) were pooled together and
then randomly divided into a training set (70%), validation set
(15%), and test set (15%). We trained the regression module on
the training set and validated it on the validation set, and further
evaluated its performance on the test set. In addition, we tested
our regression module on four independent datasets, including
OASIS, NACC, AIBL, and MIRIAD.

We first evaluated the performance of our 3D-Mixer on pre-
dicting either FDG-PET SUVRs or AV45-PET SUVRs based
on sMRIs with the regression module. Fig. 2(a) shows the
correlation between the estimated and actual FDG/AV45-PET
SUVRs over the ADNI test set, from which we observed that
our 3D-Mixer can efficiently predict the SUVRs with correlation
coefficients above 0.6. As expected, our estimated SUVRs can
characterize AD status as effectively as the actual SUVRs, and
we further show that the predicted FDG/AV45-PET SUVRs have
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Fig. 2. Prediction of FDG/AV45-PET SUVRs using the regression module of 3D-Mixer. (a) The comparison of the estimated and the actual SUVRs
on the ADNI test set, where each dot denotes a subject, and r denotes the Pearson’s correlation coefficients between the estimated and actual
SUVRs. (b) The receiver operating characteristic curves respectively for the classification of CN and AD subjects from the ADNI test set, OASIS, and
MIRIAD datasets using the estimated FDG-PET SUVRs (left) and estimated AV45-PET SUVRs (right). (c) and (d) The estimated FDG/AV45-PET
SUVRs (normalized by baseline) at different time points (bl, m06, m12, and m24 respectively denote baseline, the visits 6 months, 12 months, and
24 months after baseline) in the ADNI test set. ∗∗: p ≤ 0.01, ∗: p ≤ 0.05, ns.: Not significant.

a similar pattern to the reals across different AD status groups
(Supplementary Fig. S1), where the subjects with the status
closer to AD had lower estimated FDG-PET SUVRs and higher
estimated AV45-PET SUVRs, indicating lower metabolism lev-
els and higher beta-amyloid deposition levels in the brains. The
above results indicate that the brain sMRIs can indeed help
with predicting FDG/AV45-PET SUVRs, in agreement with
the previous conclusion that brain atrophy detected by sMRI is
associated with hypometabolism and beta-amyloid deposition
that can be respectively detected by FDG-PET and AV45-PET
[44], [45].

We then showed the Pearson’s correlation coefficients be-
tween the estimated FDG/AV45-PET SUVRs and the Mini-
Mental State Examination (MMSE) scores along four time
points over the ADNI test set (Supplementary Fig. S2), where
MMSE is a widely used measure of cognitive impairment and
a higher MMSE score indicates better cognitive status. Firstly,
we observed that the estimated FDG-PET SUVRs positively
correlated with MMSE scores along the time points while neg-
ative correlations were observed for the estimated AV45-PET
SUVRs, indicating that the predicted SUVRs can indeed char-
acterize cognitive impairment status. Secondly, both estimated
FDG-PET and AV45-PET SUVRs show reasonable correlations
with MMSE scores at later time points, implying the potential
for prognosis analysis. For example, the estimated FDG-PET
SUVRs at bl (baseline) correlated with the MMSE scores at
m12 (12 months after baseline) (r = 0.65, p = 1.2× 10−5),
while AV45-PET SUVRs at m06 correlated with MMSE scores
at m12 (r = −0.63, p = 1.0× 10−4).

Subsequently, We evaluated the diagnostic power of the esti-
mated FDG/AV45-PET SUVRs by discriminating AD from CN
subjects. Fig. 2(b) shows the receiver operating characteristic
(ROC) curves for the classification of CN and AD subjects
on the five datasets. We can observe that both the estimated

FDG-PET SUVRs and estimated AV45-PET SUVRs show
promising abilities for discriminating AD from CN subjects
on all five datasets with AUC (area under ROC curve) scores
≥ 0.85. Especially, the estimated AV45-PET SUVRs achieved
great performances on the ADNI test set and MIRIAD with AUC
scores greater than 0.96. The AUC scores for the OASIS dataset
were relatively lower, which might be due to the differences
introduced by the inconsistencies of sMRI acquisition and the
population that the subjects were from. The above observations
demonstrate that the estimated FDG/AV45-PET SUVRs have a
promising power for AD diagnosis on independent datasets.

To further explore the diagnostic potential of the estimated
FDG/AV45-PET SUVRs, we looked at the longitudinal SUVR
patterns estimated at three time points after baseline for subjects
in the ADNI test set. As shown in Fig. 2(c)–(d), the pMCI
and AD groups demonstrated a substantial decline in glucose
metabolism, i.e., FDG-PET SUVRs, while the CN and sMCI
groups had relatively stable glucose metabolism in the 2-year
follow-up, in agreement with the conclusion drawn from the
previous studies [41], [46] with actual FDG-PET SUVR. On the
other hand, the continuously increasing beta-amyloid burden,
i.e., AV45-PET SUVRs, was also specifically observed for the
pMCI and AD groups, while it was more stable for the CN
and sMCI groups. These observations imply the potential of the
estimated FDG/AV45-PET SUVRs for the AD diagnosis and
the prognosis analysis of MCI individuals.

C. AD Status Prediction

Inspired by the above findings, we developed the 3D-Mixer
model to predict AD status based on the concatenated embedding
features derived from both the regression module (the PET
embedding features) and the classification module, where the
classification module takes input as sMRI patches extracted from
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TABLE II
THE PERFORMANCE OF 3D-MIXER AND OTHER COMPETING METHODS ON CN VS. AD CLASSIFICATION

pre-identified landmarks. By following previous works [16],
[17], ADNI-1 was used for training and validating, and ADNI-2
(the subjects that overlapped with ADNI-1 were excluded) was
used as the test set, where ADNI-1 was further divided into a
training set (85% of the subjects) and a validation set (15% of
the subjects). Additionally, we also use the data split we used
in the SUVR prediction tasks, where all ADNI subjects were
pooled together and split into training, validation, and test set.
We denote this test set as ADNI-held-out set. Four independent
datasets NACC, OASIS, AIBL, and MIRIAD were also used for
testing. We repeated the experiments five times with different
random states and reported the averaged performance.

We first evaluated the proposed 3D-Mixer and other compet-
ing methods on the classification of CN and AD subjects as sum-
marized in Table II. We observed that our proposed 3D-Mixer
outperformed the other competing methods on ADNI-2 in terms
of AUC, area under precision-recall curve (AUPR), and accuracy
(ACC), achieving an AUC of 0.968, an AUPR of 0.954, and an
ACC of 0.906. And the proposed method also achieved the best
performance on the ADNI-held-out set (Supplementary Table
SI). Without any fine-tuning, we applied the models trained
on ADNI-1 to the independent external datasets (i.e., NACC,
OASIS, AIBL, and MIRIAD), and our 3D-Mixer still achieved
the overall optimal performance (Table II), which implies the
strong robustness of our 3D-Mixer model. Besides, we also
checked the impact of the PET embedding features on the per-
formance of 3D-Mixer with a variant of 3D-Mixer (denoted by
3D-Mixer-) without using the PET embedding features. From
Table II and Supplementary Table SI, we observed that PET
embedding features can indeed boost the performance of clas-
sification, where 3D-Mixer achieved higher AUC and AUPR
scores for the discrimination of CN subjects from AD subjects on
all datasets compared to 3D-Mixer-. Interestingly, however, even
with simple architecture, 3D-Mixer- outperformed all competing
CNN models and ViT over the ADNI and NACC datasets and

is comparable over other independent datasets, indicating the
potential of the MLP-Mixer architecture for 3D brain sMRI
analysis.

Except for the diagnosis of AD, we also evaluated the per-
formance of 3D-Mixer and other competing methods for the
prognosis prediction of MCI, i.e., the discrimination between
sMCI and pMCI subjects, where pMCI will ultimately convert
to AD. Table III shows the performance of 3D-Mixer and other
competing methods over the ADNI-2 and other independent
datasets. Our proposed 3D-Mixer outperformed all other meth-
ods on the two largest datasets (i.e., the ADNI-2 and NACC
dataset) in terms of AUC, AUPR, and ACC and was superior
to other methods over the OASIS dataset in terms of AUC
and ACC. Specifically, 3D-Mixer achieved an AUPR of 0.560
on the ADNI-2 dataset which was improved by 6% compared
with the second-best LDMIL (AUPR = 0.498). Moreover, the
proposed method also overall outperformed other competing
methods on the ADNI-held-out set (Supplementary Table SII).
Besides, without considering the PET embedding features, the
performance of 3D-Mixer- degraded significantly compared
with 3D-Mixer. We also noticed that the PET embedding features
were more useful for MCI prognosis prediction than the AD
diagnosis. For example, with the benefit of PET embedding
features, the AUC of 3D-Mixer for the classification of sMCI
and pMCI subjects was improved respectively by more than 2%
and 3% on ADNI-2 and OASIS compared with 3D-Mixer-, and
the AUPR was improved by nearly 4% on NACC.

D. Interpretability of 3D-Mixer

Our proposed 3D-Mixer can simultaneously predict
FDG/AV45-PET SUVRs and AD status with high accuracy
based on sMRI patches. To explore the interpretability of
our proposed 3D-Mixer model, for each prediction task,
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TABLE III
THE PERFORMANCE OF 3D-MIXER AND OTHER COMPETING METHODS ON SMCI VS. PMCI CLASSIFICATION

Fig. 3. Top 10% most weighted patches for FDG-PET SUVR prediction (the first row), AV45-PET SUVR prediction (the second row), the
classification of CN and AD subjects (the third row), and the classification of sMCI and pMCI subjects (the fourth row) in the corresponding output
branch, which were marked by red blocks and balls.

we extracted the top 10% most weighted patches in the
corresponding output branch as shown in Fig. 3.

The reason of using sMRI to predict PET SUVRs is that
brain morphology is associated with glucose metabolism and
beta-amyloid burden in the brain. For example, the atrophy of

the hippocampus detected by sMRI has been associated with
the disruption of the cingulum bundle, which could further
cause hypometabolism in multiple brain regions related to AD,
including the posterior cingulate cortex and middle temporal
gyrus [47], [48]. Besides, it has been shown that a high level of
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Fig. 4. Influence of the hyper-parameters on the performance. (a)
Pearson’s correlation coefficients between the estimated and actual
FDG/AV45-PET SUVRs achieved with different depths. (b) and (c) The
AUC of 3D-Mixer trained with different depths for the classification of
CN and AD subjects and the classification of sMCI and pMCI subjects.
(d) Pearson’s correlation coefficients between the estimated and actual
FDG/AV45-PET SUVRs achieved with different widths. (e) and (f) The
AUC scores of 3D-Mixer trained with different widths for the classification
of CN and AD subjects and the classification of sMCI and pMCI subjects.

beta-amyloid burden might accelerate cortical atrophy, and that
beta-amyloid modulates the association between neurofilament
light chain and brain atrophy in Alzheimer’s disease. And the
volume loss of the hippocampus, cingulate cortex, and temporal
cortex has been reported to be associated with beta-amyloid
burden in multiple brain regions, especially the precuneus [4],
[49], [50]. In line with the above findings, we observed that for
both FDG-PET SUVR and AV45-PET SUVR predictions, there
are common top-weighted patches involved in the regions of the
hippocampus, posterior cingulate cortex, and temporal cortex
(Fig. 3). Then we compare the FDG-PET images used in this
study from CN and AD subjects, as we showed in Supplementary
Fig. S3, the posterior cingulate cortex, and temporal cortex had
lower levels of glucose metabolism in AD subjects. And we also
noticed higher beta-amyloid burden in multiple brain regions,
particularly in the precuneus, in AD subjects by comparing
AV45-PET images of CN and AD subjects (Supplementary
Fig. S4). Taken together, the highly weighted patches in our
model for predicting FDG/AV45-PET SUVRs can effectively
characterize the metabolism level and beta-amyloid burden in
the brain, which brings insights into the mechanism of the pro-
posed 3D-Mixer on effectively predicting the FDG/AV45-PET
SUVRs.

Moreover, for the classification of CN and AD subjects and
the classification of sMCI and pMCI subjects, the top 10%
most weighted patches in the classification branch were similar,

Fig. 5. Performance in term of AUC of 3D-Mixer and other competing
methods with various model sizes, i.e., the number of learnable param-
eters, on the classification of CN and AD subjects and the classification
of sMCI and pMCI subjects.

which were enriched around the region of the hippocampus.
Many previous studies [13], [51], [52] have shown that the
hippocampus is associated with the decreasing memory of AD,
and the decreasing volume of the hippocampus is also often
used as a biomarker for AD. Specifically, the atrophy of the
right hippocampus was also reported significantly associated
with the conversion from MCI to dementia [53]. From the
above results, we can see that the proposed 3D-Mixer model
is able to effectively capture the important features for both AD
diagnosis and MCI prognosis prediction, and those features can
help interpret the mechanisms underlying AD.

E. Influence of the Hyper-Parameters of 3D-Mixer

In the 3D-Mixer model, there are two hyper-parameters, in-
cluding the depth, i.e., the number of Mixer blocks along each
branch (N ), and the width, i.e., the dimensions of embedding
features for each patch. We chose 4 and 64 as the depth and width
in our implementation based on the performance on validation
set (Supplementary Fig. S5). In this section, we evaluated the in-
fluence of these parameters on the performance across different
datasets by training the model with different depths and widths.

Firstly, we trained 3D-Mixer with a different number (N ) of
MLP-Mixer blocks selected from {2, 4, 6, 8}. As we show in
Fig. 4(a)–(c), the depth had a relatively small influence on FDG-
PET SUVR prediction while the highest correlation coefficient
was achieved at the depth of 4 for AV45-PET SUVR prediction.
And for AD status prediction, the model depth only had a rela-
tively evident impact on OASIS dataset on the classification of
sMCI and pMCI subjects. Specifically, the performance dropped
from the peak of 0.663 to 0.606 in term of AUC when the depth
grew from 4 to 6. This was reasonable since the deeper model
was less easy for training and had a larger number of learnable
parameters which usually leads to less robustness.

To evaluate the influence of width, we trained 3D-Mixer with
different widths selected from{32, 64, 128, 256}. Fig. 4(d)–(f)
show that our model reached the best performance at the width of
64 for AV45-PET SUVR prediction while the width had a weak
impact on the FDG-PET SUVR prediction. Similar to the depth,
the width had a more significant impact on the performance of
the classification of sMCI and pMCI subjects compared to the
classification of CN and AD subjects. As we showed in Fig. 4(f),
for the classification of sMCI and pMCI subjects, the AUC score
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on ADNI-2, NACC, and AIBL grew with the width when it
was small, while large width can have a negative impact on
the performance on the three independent datasets (i.e., NACC,
OASIS and AIBL dataset), especially the OASIS dataset.

IV. DISCUSSION

The existing PET prediction methods usually synthesize
the whole image of FDG-PET and use CNN based GAN
architectures, while our proposed method can simultaneously
make predictions for the quantitative descriptions of both FDG-
PET and AV45-PET. Although compared to the existing GAN
based method of synthesizing the entire image, our method only
predicts overall quantitative descriptions of PET images, we
actually use the embedded features of PET when the model is
further used for predicting AD status, which is similar to the
GAN based method when it was used for AD status prediction
[9], [28]. Moreover, compared to GAN synthesizing the entire
PET image, the predicted SUVRs are simpler and more intuitive,
and our method also avoids the potential instability induced
by the GAN architecture. Besides, different modalities of PET
may contain complementary information and have different
pathological implications, hence multi-modal PET is preferable.
The experimental results also demonstrate the effectiveness of
our multi-modal method for AD status prediction, while it only
needs sMRI as input after training. In addition, to some extent,
the proposed model can also provide interpretation for AD status
prediction tasks by simultaneously predicting the FDG/AV45-
PET SUVRs to better assist clinicians in diagnosis.

The good performance of 3D-Mixer may be attributed to
our employment of MLP-Mixer architecture instead of the
extensively used CNN [17], [18], [25], [54]. For CNN based
models, the sizes of receptive fields are restricted by the number
of stacked layers. Specifically, for 3D MRI images, the con-
volutional layers use 3D convolution kernels. Hence, model
sizes grow heavily to obtain sufficiently large receptive fields.
However, a single Mixer block will be theoretically sufficient
for obtaining a receptive field that covers whole input im-
ages. This allows us to better control the model size. And
our experiment results also show that our MLP-Mixer archi-
tecture model outperformed other CNN models in AD sta-
tus prediction. Here, for each competing method, we showed
its model size, i.e., the number of learnable parameters, and its
AD status prediction performance in term of AUC in Fig. 5,
where 3D-Mixer∗ denotes the model with the halved width
of 3D-Mixer. We observed that the proposed models outper-
formed other competing methods with similar model sizes
for each independent dataset. Hence, the proposed 3D-Mixer
showed higher parameter efficiency. Higher parameter efficiency
can be beneficial for both academic research and real-world
applications, for reducing the risk of overfitting and the con-
sumption of computing and storage resources while keeping
good performance.

We also noticed that all competing methods reached a
relatively lower performance in the prognosis prediction of
MCI as well as in migrating the ADNI-trained model to some
independent datasets (e.g., OASIS). Firstly, the relatively

lower performance in the MCI prognosis prediction might be
attributed to the difficulty of the task itself. For example, there
are many possible causes of MCI (e.g., AD, vascular dementia,
depression), under which the mechanism may be complex [55].
Moreover, despite strong heterogeneity among patients with
MCI, imaging differences between sMCI and pMCI may not be
as significant as those between CN and AD [56]. Concerning
the performance decline when migrating the ADNI-trained
model to some other datasets, this is to be expected due to
the batch effect and other differences (e.g., subject inclusion
criteria) across different datasets [57], [58], [59]. For example,
sMRIs from other independent datasets could be acquired with
various parameters. In particular, for the OASIS datasets, the
performance decline could also be attributed to the inconsistency
of diagnostic criteria compared to ADNI [60].

Despite the effectiveness of the proposed model, we
acknowledge several limitations. Firstly, we show the
effectiveness of the MLP-Mixer architecture, however, we only
used a simple strategy (concatenation) to integrate the features
of different modalities, where the interaction between different
modalities is not fully considered. Secondly, the heterogeneity
of the sMRIs from different datasets is not taken into account in
this work. For instance, the performance usually declined when
the ADNI-trained model was applied to other external datasets
(Tables II and III). Besides, currently, we only consider sMRI,
FDG-PET, and AV45-PET while other modalities [61], [62]
of data might also be sensitive to AD (e.g., tau PET). In our
future work, we planned to design better architecture to model
the interaction of features of different modalities and utilize
the harmonization methods [63], [64] for MRI data to reduce
the heterogeneity of them to further improve our prediction.
Moreover, other modalities of data will also be considered in
our future works.

V. CONCLUSION

In this article, we proposed a model based on MLP-Mixer
architecture, i.e., 3D-Mixer, consisting of a regression module
for simultaneously predicting FDG/AV45-PET SUVRs and a
classification module for AD status prediction. By benchmark-
ing on independent datasets, we showed that our proposed
model can effectively predict FDG/PET-PET SUVRs, which
also exhibit good discrimination capacity between CN and AD
subjects. Moreover, by integrating sMRIs with the multi-modal
PET embedding features derived from the regression module,
3D-Mixer outperforms other competing methods for AD status
prediction and shows better generalization to external indepen-
dent datasets.
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